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Abstract

The combination of tree search and reinforcement learning has recently been
applied to board games with great success. However, these methods intrinsically
rely on extensive rollouts in the environment. We consider the problem of extending
these approaches to settings in which no simulator is available. Instead, we assume
that we have access to a partial model that accurately predicts the short-term
consequences of the agent’s actions, disregarding the complex dynamics of the
surrounding environment. We demonstrate the feasibility of using tree search within
such a partial simulator for fixed horizon planning, learning the value function
with reinforcement learning. We showcase our approach on a challenging task
with a combinatorial action space, partial observations, and complex dynamics:
the generation of high-level strategies in the real-time strategy game StarCraft®:
Brood War™l

1 Introduction

Planning is an essential component of intelligent behavior, and tree search is at the core of break-
throughs in turn-based zero-sum games as achieved by DeepBlue, AlphaGo or AlphaZero [2, (18, [17].
It is a natural way to structure exploration and to build hierarchies of actions, but requires the posses-
sion of a simulator or forward model of the environment. In many settings, rollout procedures can be
too computationally expensive, or simply unavailable due to properties of the environment: complex
dynamics, very large state and action spaces or partial observability can result in combinatorial
explosion of complexity. We can sometimes however obtain simulators that are only approximate or
based on simple heuristics and that provide useful short-term predictions.

In this work we propose to study the usage of such imperfect, or partial, simulators to construct plans
as a means to structure an otherwise combinatorial action space. In particular, we are interested in
simulators or forward models that are able to predict the direct, local effects of actions with high
accuracy. This is in contrast to forward models in the classical sense, as such partial models do not
attempt to predict the whole future state.

We show how to employ a partial simulator for planning in combination with Monte-Carlo tree
search (MCTS) in a partially observable environment, and propose to use the prediction of the partial
simulator as an action abstraction. This makes it possible to learn effective value models in an

!StarCraft is a trademark or registered trademark of Blizzard Entertainment, Inc., in the U.S. and/or other
countries. Nothing in this paper should be construed as approval, endorsement, or sponsorship by Blizzard
Entertainment, Inc.

Preprint. Under review.



otherwise combinatorial action space. Our approach is validated on a build order planning task in the
real-time strategy game StarCraft: Brood War.

2 Planning in Partially Observable Environments

2.1 Related Work

The heavy computational burden of planning in Partially Observable Markov decision processes
(POMDP) motivates a variety of approximate techniques [8]. One of the main bottlenecks, the
tracking of belief states across planning steps, was previously addressed by sampling belief points and
for each storing its value and its derivative [[15] and by maintaining state and action history MCTS
nodes, which then enables belief state estimation via particle filtering, for example [16].

Efficient planning can also be achieved by exploiting structural properties of the problem at hand. In
the context of RL, this is commonly done by abstraction at the level of states [13]], along the temporal
dimension by introducing macro-actions or options that consist of several successive actions [21]],
or at the level of actions [19} 25]. For POMDPs specifically, [14] decomposes the action space and
obtains a hierarchy of POMDPs with reduced complexities.

2.2 Action Abstraction via Partial Models

It is often infeasible to produce good state abstractions for complex partially observable environments.
This prevents learning accurate forward models for long-term predictions which are required for
planning across several time-steps. But if an environment allows modeling the isolated, local
consequences of our actions, we can leverage this to build meaningful abstractions over time. We
refer to a model of these local effects as a partial model. Here we will determine necessary conditions
for such action abstractions, and then detail the properties of a partial model to enable planning in
said environments.

Consider an MDP represented as M = (S, A, 7, r, ) with states S, actions .4, a transition function
7:8 x A — P(S), an expected reward of a transition 7 : S X A x § — R and a discount factor +.
Without loss of generality we assume r € [0, 1]. An abstraction over actions is provided by:

1. an exact cover of the original set of actions A = (@, ...,az), i.e. a; C A, U;‘Zl a; = A,
andV(j,j")j #j =a;na; =0.
2. arandomized strategy p : S x A — P(A) that selects an action given an abstract action

such that u(s,@)(a@) = 1 (i.e., u outputs an action in @ with probability 1 in every state when
given ).

This gives rise to a new MDP M = (S, A, 7,7,v) where 7 : S x A — P(S) is such that
?(qu,ﬁ) = Zaeaﬂ(a|sva)7(s/|57 a) and ?(8,6, S/) = ZaEE ,u(a|s,6)r(s,a, S/)'
A direct result of the simulation lemma (Strehl and Littman [20, Lemma 6], [27]) is that if the

abstraction preserves the transition and reward structure, the optimal policy in the new MDP M is
nearly optimal in the original MDP. Hence, assuming

Je, >0,Vs, max max E ‘ s'|s,a) — 7( \s,a’)| < 2¢
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we can state:
Observation 1. Let @;be the optimal Q-function in M, and let T be the policy in M inferred from
the optimal policy in M defined as

A'(s) = argmax Q (s, @)
acA
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Then, under assumption (1), denoting with Q™ the true Q-function of the stochastic policy m in M
and with Q* the optimal Q-function in M, we obtain:

(1 — )€ + e
(I=7)1=v+e"

H;%XQ*(& Cl) - QW(&a) < 2

Proof. We create an MDP M’ = (S, A, 7/, r',~) from M with the action space of M, i.e. for an

action a and its abstraction @, let 7/(s’|s,a) = T(s'|s, @) and r/(s,a,s’) = (s, @, s’). The policy

7 as defined above is optimal in M’ since it is optimal in M. Conditions () make sure that 7/

and 1’ satisfy max; 4 |1'(s,a) — r(s,a)| < € and max; q[|7'(.|s,a) — 7(.[s,a)|1 < 2¢. Writing

Q" —Q"<Q*"—Q™ +Q"™ —Q*+Q* — Q, we can apply [20, Lemma 6], which compares
<0

the Q-value of a policy in two similar MDPs, to both |Q* — Q'™ | and |Q"* — Q7| to obtain the
result. =

For deriving the requirements of a partial model, we assume an environment where short-term local
effects of an agent’s actions can be modeled in isolation. For illustration, consider a task allocation
problem of assigning work items to multiple processors. Let us assume that the overall system
dynamics are stochastic: processors operate at variable, uncontrollable speeds, and an outside process
continuously schedules work items. Even without considering the specific behavior of processors, we
can predict with high accuracy the local effects of a single assignment action, e.g. a change to our
work queue (one item is gone) or to the state of the designated processor (item assigned). Modeling
the full state of our system after taking an action is, in contrast, extremely challenging. It requires
considering that our selected processor could fail, and requires estimating which processors are
available and how many work items would be scheduled next.

To formalize a partial model, we assume a POMDP setting (S, A, 7,7, Q, O,~) in which we can
represent a state s; and observations o; in a joint feature space R? obtained via ®(s;) and ¥ (o),
respectively. We now assume the overall system dynamics f can be expressed as a function of a (true)
partial model p from the effect of our action and independent noise components u;, v; as follows:

D(st41) = f(se,us, p(¥(0t), as, vy))

Considering resource management tasks such as our task allocation problem from above, local
changes to state features (e.g. the reduction of items in the work queue by assignment) can be
modeled in deterministic manner, and we can treat, in feature space, the system dynamics as an
additive term. With a deterministic partial model ¢’, we thus have:

D(se41) = [ (D(s1),ue) + g (P(or), ar) -

When planning across several time-steps, we desire a partial model that can be applied recursively. g’
is a function of the features of observations ¥(o; ), which raises the need for another partial model
g :R? x A — R? that is able to predict those in a reliably up to an error term «:

|g(\II(0t)7at) - ‘I’<0t+1)‘ < .

When generating rollouts, applying the partial model g multiple times will accumulate prediction
errors. In realistic settings, long-term prediction errors of local effects are dominated by the unac-
counted global dynamics f’. Over shorter time spans, the possession of g enables planning by treating
local effects of a sequence of actions (aj)zi}g up to a planning horizon h as an action abstraction:

a=gn (¥(o), (a;)51})
=g (gn-1(¥(0y), (aj)zi?_l), aitn) , with g1 = g

The planning process now consists of finding a sequence of actions that maximizes the expected
return of the resulting effects as predicted by the partial model, given the current state s;. In our
experiments, we realize this with MCTS and a -function Q(s, @) that evaluates the resulting features.
Ignoring the overall system dynamics f’ during the planning phase will prevent us from executing
the resulting action sequences exactly as planned without loss of return; as a remedy, we re-plan at
regular intervals.



We emphasize that by considering local consequences rather than raw actions, we can effectively
marginalize over multiple action sequences that produce the same effect. Depending on the envi-
ronment, this marginalization can have a significant impact on the exploration and generalization
capabilities of our model. In the task allocation example above it might be possible to assign two
work items to two processors in the same environment step. The order of the assignments does not
matter here and modeling both Q(s¢, (a;,a;)) and Q(s¢, (a;, a;)) explicitly increases the sample
complexity of the learning algorithm and can negatively impact generalization performance.

3 Build Order Planning in StarCraft

3.1 Background

To showcase our proposed combination of a partial simulators and RL for planning, we apply them
to the real-time strategy (RTS) game StarCraft: Brood War for the task of build order planning. In
this context, a build order prescribes a set of characters (units) or technologies to produce at each
time step. The desired result of executing a build order is a composition of units that — subject to
each player’s skill at handling them — makes it possible to defeat the opponent. The key challenge in
producing a winning build order is accurately allocating resources to economic, technological, or
military investments, subject to payoffs which vary based on the opponent’s partially hidden strategy.
For example, producing more gatherers can result in affording a larger army later, but producing too
few combat units may result in immediate defeat.

The implementation of a build order plan, i.e. the translation to concrete game actions, is commonly
done using a heuristic planner obeying the constraints imposed by the game mechanics: resource
requirements, production time or prerequisite units or technologies [3]]. In our experiments, we’re
utilizing the build order planner in the open-source StarCraft bot CherryPiEl Starting from a list
of items to produce, the planner emits a plan up to a specified horizon, specifying which of the
items can be produced at which point in the future and which units and upgrades will have been
completed or will still be in production at the planning horizon (see Figure f] for an example plan).
During the search phase, the planner resolves dependencies and performs optimizations by scheduling
productions in parallel when feasible. Resource income is approximated with linear functions based
on the number of available worker units and resource depots.

It is important to point out that build order planners employed in StarCraft (including the one we
use here) do not model state changes due to actions of the opponent player but assume unhindered
execution of the plan. In reality, the combat with the opponent may eliminate some of our units
or interfere with resource acquisition and unit construction. Adapting to these changes, or to
newly gained information on the opponent’s strategy, requires either frequent re-evaluation of the
current plan or for re-planning from scratch in short intervals. The planner we are considering here
implements the latter method and re-plans at regular intervals.

To further illustrate the point above, we measure the accuracy of CherryPi’s planner in two scenarios
using several planning horizons (Figure[5). In each setup, we construct build orders at step ¢ with
a horizon h up to t + h. We then execute the resulting build order and re-plan frequently as usual.
At game time ¢ + h, we measure the absolute difference in unit counts and upgrades between the
target state of the planner from time ¢ and the real state at time ¢ + i with a weighted sum account for
respective production costsﬂ of an item. In Figurewe play without an opponent so that inaccuracies
of the plan stem solely from the approximations performed by the planner. For comparison, Figure[Ib]
shows the average planning accuracy over 10 two-player games against another bot. Planning errors
are now also a result of the opponent’s actions and we can observe higher discrepancies.

3.2 Related Work

Traditionally, build order research in RTS games like StarCraft focused on efficient planning en-
gines [3]], generating fixed strategies [, [L1]] or reactive planning to combat derivations from the
initial plan due to opponent actions [26]. For continuous planning over the course of a game, [0]
proposes an evolutionary algorithm to build orders, which are then evaluated with a hand-crafted

“https://github.com/TorchCraft/TorchCraftAl
3Production costs in StarCraft are measured in minerals and gas; the total cost is the sum of both amounts.
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Figure 1: Accuracy of the build order planner used in CherryPi and with our model. We compare
the difference between the target state and the true state when playing (a) without any opponent
interaction and (b) against another bot. Note the difference in scale on the y-axis.

fitness function. In [23]] the authors predict the build order of the opponent player using a Bayesian
model and motivate its usage for guiding future strategic decisions.

Recently, RL approaches have been used to switch between several rule-based build orders during a
game [4] and to directly predict build actions for each environment step using Q-Learning [24]]. A
supervised learning approach using replays of human games was presented in [7]]: a neural network
is trained on pairs of states and build actions, and during evaluation a build order manager queries the
model for a next action to perform (multiple actions can be performed in one game step).

The approach presented in this work uses a tree-search planning component to efficiently construct
valid and optimized build orders spanning up to a minute of game time. Re-planning the build
order frequently enables adaptation to the current game situation. Instead of evaluating future unit
compositions with hand-crafted heuristics, we learn a value function with RL as described in the
following section. We will demonstrate in the experimental section that both the planning and the
learning component are crucial for obtaining good performance.

3.3 A Partial Simulator for Build Order Planning

Considering the formulation introduced in §2.2] we consider a native action space A that is a subset
of all possible build actions, e.g. for producing a unit, researching an upgrade or expanding at another
base location; each action is subject to different resource constraints and duration (see Appendix [A]
for a full listing). We define the feature space R¢ as a d-dimensional vector of descriptive features that
our partial model can predict, e.g. unit counts; see §4.1] for an exhaustive enumeration. The true state
features ®(s;) are unavailable due to partial observability while ¥ (o) is obtained directly from the
game interface. We differentiate between the unit counts of our player ¥°(o;) and the (observable)
enemy unit counts ¢ (o;) as our partial model g only accounts for feature changes directly caused
by our own build actions. The build order planner provides the partial model gy, i.e. the planner
implicitly unrolls a sequence of build actions up to a horizon h and produces U° (o). As detailed
above, U°(o.4,) is, for large h, subject to high uncertainty in real games.

Our planning procedure now consists of a tree search among possible action sequences (a;)?_,. Note
that our environment allows parallel execution of actions when feasible, because the StarCraft game
engine can be instructed to perform a different command for each controllable unit at each time step.
The length of action sequences obtained via planning is thus dependent on the planning horizon
as well as the specific state s;. The value of a tree node is determined by performing rollouts with
a random succession of additional actions, applying g, to the resulting sequences of build actions
and scoring the predicted features W°(o,) for each rollout with a Q-Function Q(s;, U°(0¢41)).
To improve the valuation of future unit compositions, we model Q(s¢, U°(0s4p)) with a two-stage
neural network which first integrates (\Il(oj))§:1 into an embedding e; using a recurrent network and
then predicts @) from the concatenation of e; and W°(o; ). The search procedure is terminated after
a fixed number of traversals with UCT, or when the tree is fully explored. To accelerate the planning



procedure, we leverage our planner’s ability to construct build orders and the corresponding rollouts
incrementally. As a result, each node in the search tree is assigned a corresponding planner state.

4 Experiments

4.1 Model and Features

We model the (Q-Function over our action abstractions as a two-stage neural network as described
in We first featurize observations into ¥(o;) by accumulating per-type unit counts in disjoint
channels for allied and enemy units, scaled by their approximate in-game value [22]] and a factor
of 1073, Upgrades and technologies are represented as a binary vector. The number of bases is
passed in numerical form. Resources are provided in a logarithmic scale of log(0.2x + 1). As further
categorical features we consider the current game time (in minutes) and the index of the map in
the pool. The featurized action abstraction U° (o) produced by our partial model is limited to
allied unit counts and resources and additionally includes the presence of a base expansion action in
the current plan. We differentiate between completed units and units being produced using disjoint
channels. Multiple units can be produced within planning horizons we examine; to discriminate
between producing units earlier and later we include U° (o4 p) and U°(osyp) for B', R < h in the
featurizatio

The state encoder consists of dedicated 8-dimensional embeddings for each categorical feature, which
are then concatenated with the remaining features. A 512-cell LSTM [5] forms the core component
of the encoder, and its output is subject to a linear projection resulting in a 128-dimensional state
embedding e;. A new observation is presented to the encoder every 5 seconds of game time. The
second part of the model estimates Q(e;, U°(0¢+1,)) and consists of a single linear combination
followed by a sigmoid activation function.

4.2 Training

We collect experience for training the (Q-Function by playing full games against a variety of rule-based
community bots, considering Zerg vs Zerg matchups only. We play on a variety of maps and provide
opponents with the opportunity to adapt between games as to maximize the strategies and game
situations the model gets exposed to (we refer to Appendix [B|for a detailed description of the setup
for training games). During training games, we use the latest model for planning as-is and rely solely
on MCTS for exploration. The model is trained to predict the return of each (s;, U°(0¢4,)) pair that
results from the final build order plan, which corresponds to 1 for wins and 0 for games that are lost
or timed out (i.e. we only supply a final reward and use v = 1). Gradients are computed on batches
of 256 state-action sequences corresponding to entire games. Truncated back-propagation through
time (BPTT) is not applied as the timeout imposed on training games limits the sequence length of
samples to 360. We optimize a binary cross-entropy loss and use Adam [9] to compute parameter
updates.

We tune the learning rate via population-based training (PBT) [12] with a population size of 8. The
fitness of models is estimated based on the rate of winning their respective training games. Models
check-point their parameters every 60 updates; after all but one population member produces 2 check-
points (this corresponds to 30720 games with a batch size of 256), we rank all members according
to their fitness and cull the worst-performing 50% of models. In parallel to each training run, we
continuously evaluate the performance of the best check-points as determined by training win rates
(Appendix [B). New members are initialized from the best-performing model check-point according to
the parallel evaluation runs, and their learning rate is sampled from log-space in [107°,10~2). A plot
of PBT families (or lineages) can be found in Figure[5] Finally, we use the result of the evaluation
runs to determine the best check-points for the entire PBT run.

4.3 Baselines

In order to better judge the efficacy of our approach, we present two baseline methods for comparison.
The heuristic baseline uses MCTS settings that are identical to the experiments described above.

4specifically, we include features at 2, 5 or 15 and 5, 15 or 30 seconds when planning for 15, 30 or 60
seconds, respectively.
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Figure 2: Win rate during population-based training, and evolution of learning rate.

Instead of learning a @-Function we estimate the value of the planner output with a heuristic score,
which is a (scaled-down) weighted sum of the predicted unit counts at the planning horizon by their
respective approximate in-game value [22]]. The second baseline does not plan into the future, instead
solely estimating the value of action sequences which can be started within the next second. MCTS
fully explores all possible action sequences in this case. We refer to this variant as a policy baseline,
even though it has a planning horizon of 1 second. We prefer this baseline to a pure policy model as
it has exactly the same model and action space (which is an advantage over a pure policy model as it
can take structured simultaneous actions) as when we plan to further horizons.

4.4 Results

Table 1: Evaluation (test)

Influence of the MCTS exploration and planning horizon: We display win rates across levels of
in Table [T the evaluation win rates for a trained model across varying exploration (c) in MCTS
values of ¢, the exploration hyperparameter from the UCT formula v; + and number of rollouts
cy/™2X (as in [10]); and across varying values of r, the number of (r), with a model trained
i with ¢ = 2.82, at plan-

ning horizon 30sec, re-
planning frequency Ssec.

rollouts performed by MCTS. While more rollouts generally improve
performance, 10k shows diminishing returns vs. 5k so we use 5k in all
other experiments. As for ¢, given a high enough r (and ¢ > 0) there is
no strong difference in evaluation win rates. But, we found it helpful to

consider ¢ a hyperparameter of optimization, similar to the learning rate, ¢ ! WR
which we did in all of our other experiments. 0 500 534

0.7 500 72.2
Influence of the planning horizon and comparison to baselines: In 141 500 64.7
Table [2] we show the training and evaluation win rates of the baseline 2.1 500 62.2
CherryPi (bot) (using its built-in, rule-based build orders), of the same 2.82 500 62.6
planning procedure used with a heuristic value, of the same model but 0 1000 69.9

0.7 1000 81.6
1.41 1000 80.9
2.1 1000 79.0
2.82 1000 76.6

planning only one second ahead (that we call a direct policy model), and
of our model across different planning horizons, planning frequencies
(how often we replan), and with pre-trained value models or not. First,

we notice that the best results are achieved with the approach we present 0 5000 837
in this paper, that our models perform better than the planner with a 17 5000 84.4
heuristic value and that a trained value model (used as policy) without 1.41 5000 85.7

planning. Note that the 29% win rate (that autobuild with a heuristic 2.1 5000 843
value function can achieve) is already non trivial to reach. We observe 2.82 5000  84.9
no significant difference between 30 and 60 seconds for our best models 0 10000  83.9
at test time, although Figure[2alshows a marginally faster training time 0.7 10000 854
with a longer horizon. We observed that pre-training the value model 14110000  86.7
(off-policy, on dumped game states and build order planner predictions) %é 5 }8888 gj;
improves training speed as well, but pre-trained models do not achieve as : :
high a final win rate.
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Table 2: Results of our value model across different planning horizon and with and without pre-
training, compared to baseline methods. We report the best win rate of the top 3 models after
population-based training.

Does it Learned Planning Pre- Win rate
Name plan? value? Horizon Frequency trained Train Test
CherryPi yes no variable 625ms - - 84.4
Heuristic yes no 15s Ss - - 29.8
Heuristic yes no 30s S5s - - 24.8
Heuristic yes no 60s S5s - - 29.4
Policy no yes Is S5s no 589 623
Policy no yes 1s 2.5s no 68.1 63.1
Policy no yes 1s Ss yes 613 59.8
Model yes yes 15s 5s no 80.6 86.6
Model yes yes 30s Ss no 84.6 90.6
Model yes yes 30s 5s yes 80.7 75.8
Model yes yes 60s S5s no 87.1 90.5

Do the value estimation errors come from the partial simulator or value model? Figure [3]
visualizes the errors of our best model across 50 games against the “Microwave” bot. While initial
and final predictions are accurate, losses are misjudged in the middle of the game, and this error in
value estimation obviously has a consequence on our behavior. Related to that, in Figure[3b} the green
points (losses) at the bottom (low value error, high absolute plan difference) grossly correspond to
the green points at time of more than 600 seconds in Figure 3] when we are sure to have lost already.
The other mass of green points in Figure 35| (high value error) denotes that the losses are significantly
more frequent in states spaces where our partial simulator induces errors (w.r.t. the true state in the
future), hinting that our value model is somewhat dependant on a consistent partial state estimation —
if not on a correct one.

5 Conclusion

In this work, we demonstrated the usage of an imperfect, partial simulator to enable planning in an
adversarial and partially observable environment, and for coping with a combinatorial action space
via action abstraction. This action abstraction can be represented by featurizing the predicted state or
state changes that are consequences of a plan. Our results show that planning can be effective even if
the output of the partial model used for simulation introduces inaccuracies; however, large simulation
errors usually result in wrong valuation of plans. By comparing representative baselines and several
variants of our model, we underline that, for high-level strategy generation in RTS games, estimating



a value function via reinforcement learning and planning with a sufficient horizon are crucial for
good performance.

In the current setup, the model is not informed about the opponent it is facing, or about its past
games and results against it. This prevents the planning component from generating a better informed
opening build order to start a new game with, until the model gets some information about the
opponent’s state (by scouting). It would be interesting to investigate how adaptation across games
can be added to our approach to alleviate this issue, for instance by feeding the model with some
(summary) state of past games in a series. Future extension of this work in the setting of real-time
strategy games would benefit from self-play during training time, as there is a visible ceiling in
performance that can be obtained by training purely against rule-based bots.
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A Action Space for Build Order Planning

We consider a subset of all possible build actions as we target a single matchup (Zerg vs Zerg). table[3]
contains a full listing and includes construction time (i.e. the duration of the action) and requirements.
“Supply” is provided by Overlord units that are added to the build order by the planner when necessary.
All units require a Larva unit to be morphed from, which are automatically provided by Hatcheries.
Structures (Hatchery, Spawning Pool, Spire) require a Drone to be produced (the Drone will morph
into the structure). The Lair is morphed from an existing Hatchery which will continue to function as
a resource depot and source of Larvae afterwards.

Table 3: List of build actions considered during planning.

Resources
Action Time (s) Minerals Gas Supply Dependencies
Unit_Drone 13 50 0 1
Unit_Zergling 18 25 0 0.5 Spawning Pool
Unit_Scourge 19 25 75 0.5 Lair, Drone, Spire
Unit_Mutalisk 25 100 100 2 Lair, Drone, Spire
Unit_Extractor 25 50 0 0 Drone
Unit_Hatchery 75 300 0 0 Drone
Upgr_Metabolic_Boost 63 100 100 O Drone, Spawning Pool
Expand Unit_Hatchery placed at the next base location
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B Game Protocols

We consider different protocols for running games during training, continuous check-point evaluation
and for obtaining final performances:

» Training games are played in series of length 25. Between games, opponents have the oppor-
tunity to adapt by storing and loading data from disk after and before a game, respectively.
This ensures exposure to a variety of game situations during training as opponents may
adapt their strategy based on previous games.

* When continuously evaluating check-points during training, we use shorter series of two
games only to ensure a fast turn-around time and run 15 such series for each opponent in
parallel.

* The above evaluation method is still subject to relatively high variance; the final performance
for a run is thus obtained by running 45 two-game series against each opponent with the 3
best check-points as determined by continuous evaluation. We then report the maximum
win rate of these runs.

All games are played on the AIIDE tournament (yearly StarCraft Al competition) map pool compris-
ing of 10 maps’|and with a game time limit of 30 minutes during training and on-the-side evaluation.
Games exceeding the time limit are stopped and registered as losses.

https://skatgame.net/mburo/sc2011/rules.html
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 https://skatgame.net/mburo/sc2011/rules.html

C Opponent Bots

Table 4: List of opponent bots considered. SSCAIT versions were obtained from the public SSCAIT
laddelﬂ Bots denoted as “SSCAIT*” have been been removed or replaced by newer versions by their
respective authors.

Bot Name Version/Source
AlLien SSCAIT/AIIDE2017
Arrakhammer SSCAIT/AIIDE2017
BlackCrow SSCAIT

Microwave SSCAIT*

NLPRBot_CPAC  SSCAIT/AIIDE2017
Pineapple_Cactus  SSCAIT

Proxy SSCAIT*
Steamhammer SSCAIT*

Tscmoo Provided by author
777KBot SSCAIT
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D Example Build Order Plan

>
>

o

Figure 4: Example build order plan for a planning horizon of 60 seconds. The time scale represents
the distance of actions from current game time. This shows dependencies among items, e.g. the
supply provided by the Overlord unit that is built starting from 6s is required for producing the 3
Zerglings at 20s. The dotted rectangle depicts an item that is already in production at the start of
planning.
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E Example of a Population Based Training Run
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Figure 5: Training win rates of of lineages of agents (that can have different hyperparameters but
continue/fork training from the same model parameters) during population based training. Error bars
depict 95% confidence intervals, lines are locally weighted scatterplot (linear) smoothing.
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